Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Within seasonal temperate forests, changes in precipitation structure—its form, duration, and seasonal timing—is a dominant characteristic of climate change. While past research has focused primarily on annual precipitation totals, emerging evidence shows that short-duration extreme precipitation can impact ecosystem carbon, water, and biogeochemical cycling when it coincides with key phenological and physiological transitions. These impacts are mediated by the responses of plant and microbial physiology, aboveground–belowground interactions, and lagged feedbacks as organisms and communities adjust to these extremes. This review focuses on shifts within ecosystem water cycling, within tree growth dynamics (carbon uptake and aboveground–belowground allocation and coordination), within soil biogeochemical cycling, from the loss of winter snow, and in forest structure and community composition. Together, these concepts highlight the urgent need to understand how changes in all aspects of precipitation structure reshape the functioning and resilience of mesic temperate forests.more » « lessFree, publicly-accessible full text available November 5, 2026
-
Abstract The BlueFlux field campaign, supported by NASA’s Carbon Monitoring System, will develop prototype blue carbon products to inform coastal carbon management. While blue carbon has been suggested as a nature-based climate solution (NBS) to remove carbon dioxide (CO 2 ) from the atmosphere, these ecosystems also release additional greenhouse gases (GHGs) such as methane (CH 4 ) and are sensitive to disturbances including hurricanes and sea-level rise. To understand blue carbon as an NBS, BlueFlux is conducting multi-scale measurements of CO 2 and CH 4 fluxes across coastal landscapes, combined with long-term carbon burial, in Southern Florida using chambers, flux towers, and aircraft combined with remote-sensing observations for regional upscaling. During the first deployment in April 2022, CO 2 uptake and CH 4 emissions across the Everglades National Park averaged −4.9 ± 4.7 μ mol CO 2 m −2 s −1 and 19.8 ± 41.1 nmol CH 4 m −2 s −1 , respectively. When scaled to the region, mangrove CH 4 emissions offset the mangrove CO 2 uptake by about 5% (assuming a 100 year CH 4 global warming potential of 28), leading to total net uptake of 31.8 Tg CO 2 -eq y −1 . Subsequent field campaigns will measure diurnal and seasonal changes in emissions and integrate measurements of long-term carbon burial to develop comprehensive annual and long-term GHG budgets to inform blue carbon as a climate solution.more » « less
An official website of the United States government
